
RAIL: Code Instrumentation for .NET
Bruno Cabral

CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II
3000-290 Coimbra, Portugal

+351 239790000

bcabral@dei.uc.pt

Paulo Marques
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II
3000-290 Coimbra, Portugal

+351 239790000

pmarques@dei.uc.pt

Luís Silva
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II
3000-290 Coimbra, Portugal

+351 239790000

luis@dei.uc.pt

ABSTRACT
Code instrumentation is a mechanism that allows modules of
programs to be completely rewritten at runtime. With the advent
of virtual machines, this type of functionality is becoming more
and more interesting because it allows the introduction of new
functionality after an application has been deployed, easy
implementation of aspect-oriented programming, performing
security verifications, dynamic software upgrading, among others.

The Runtime Assembly Instrumentation Library (RAIL) is one of
the first frameworks to implement code instrumentation in the
.NET platform. It specifically addresses the limitations that exist
between the reflection capabilities of .NET and its code emission
functionalities. RAIL gives the programmer an object-oriented
vision of the code of an application, allowing assemblies,
modules, classes, references and even intermediate code to be
easily manipulated.

This paper addresses the design of an implementation of RAIL
along with the difficulties and lessons learnt in building a
framework for code instrumentation in .NET.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Code
generation, Run-time environments.

General Terms
Languages.

Keywords
Code instrumentation, .NET platform.

1. INTRODUCTION
One key aspect of many modern programming languages is that
they are compiled into a portable intermediate form and executed
by a language runtime. Typically, the language runtime allows
code to be loaded at runtime from a binary source (e.g. from a file
or from the network) and executed.

One interesting side effect of having dynamic code loading is that
before actually loading the code into a virtual machine, it is
possible to instrument the code, introducing or removing specific
instructions, changing the use of classes, variables and constants.
The key idea is that it is possible to alter the code, performing
some modifications, before the code is actually executed. These

transformations are either performed after compile time, or at load
time. With this approach it is possible to instrument the code so
that proper resource control takes place, change the code so that it
is possible to serialize and relocate executing threads in a cluster,
perform program consistency checks according to security
policies, redirect method calls to proxies, among others.

For making things clearer, let’s consider an example. Suppose
that an application has been loaded from the Internet but it can be
considered trustworthy. It would be desirable to be able to know
all the files that it is reading and writing from disk, so that one
could be sure that it is not really stealing confidential information
and sending it to the Internet. A possible approach is to try to use
a disassembler and understand the code structure. But, as it is easy
to comprehend, that is not really feasible except for trivial
applications. Nevertheless, using code instrumentation, it is
simple to replace all the references to classes that perform I/O
with corresponding proxies that implement the same interface.
Those proxies can log all the calls that are made before allowing
the original calls to take place. This way, the user can examine the
log and determine which files have been accessed.

RAIL – the Runtime Assembly Instrumentation Library – is a
general purpose code instrumentation library for the .NET
platform. It allows assemblies (the code load unit in .NET) to be
easily manipulated in an object-oriented way. Its features include
straightforwardly replacing references, types, variables, fields,
properties and method calls; iterate and change Intermediate
Language (IL) code; adding code epilogues and prologues to
methods; copy types and methods between assemblies; among
others. Also, RAIL provides several high-level patterns for
assisting the programmer performing code instrumentation.
Finally, RAIL allows assemblies to be instrumented at load-time,
just before the types are actually defined in the Common
Language Runtime (CLR) virtual machine.

2. RAIL APPROACH
Code instrumentation is not a new topic. For as long as binary
code has been generated, people have been manipulating it, even
in its binary form. The advent of generalized use of virtual
machines with dynamic code loading, and particularly Java,
fuelled an immense development in the field.
The RAIL approach consists in simplifying the programmers’ task
when performing code instrumentation. RAIL exposes a high
level API that hides the low level details of code instrumentation
and assembly’s structure from the programmer. Some of the
available high level functionalities are: change type references
across the assembly; replace field access by other fields, methods
and properties; replace method calls; replace IL instructions

Copyright is held by the author/owner(s).

OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.

ACM 1-58113-833-4/04/0010.

responsible for object creation by calls to different static methods;
insert prologues and epilogues in methods; copy types and
methods between assemblies; manipulate Custom Attributes.
RAIL creates an Object-Oriented representation of the assembly
being instrumented and allows the programmer to manipulate this
structure through the use of the just mentioned high level API.
Besides the OO structure, RAIL uses tables to hold the sequence
of objects and object references that represent the application’s IL
code and all the exception handling related information. These
tables can be directly manipulated and the objects that they hold
modified by a secondary low level API built-in RAIL for this
particular objective.

3. RELATED WORK
Abstract IL [1], developed by Microsoft Research, was the first
library to allow the instrumentation of code in .NET assemblies. It
does so by building an abstract syntax tree representing the
assembly that can be manipulated using languages like OCaml, F#
and C#. One of the shortcomings of this library is that it
specifically targets the usage of functional languages (e.g.
OCaml), and does not shield the programmer from the
complexities of interacting and manipulating assemblies.
There are also Aspect Oriented Programming (AOP) tools for the
.NET platform that use code instrumentation to apply crosscutting
concerns across applications. Two of the most known examples
are John Lam’s Common Language Aspect Weaver (CLAW) [2]
that was one of the first libraries to perform assembly
manipulation by “weaving” aspects into class methods and
Weave.Net [3].
In the Java community, several bytecode instrumentation libraries
have been developed in recent years. BCEL [4] provides an API
for manipulating Java byte code giving full control to the
developer. Its major shortcoming is that it is quite low-level and
hard to use. JOIE [5] provides a set of low-level primitives for
manipulating Java classes and higher-level interfaces that directly
support common transformer styles. Javassist [6] allows to
perform both structural and behavioral reflection on bytecode
[7][8]. Together, these libraries have been used on more than 40
projects [9] which instrument Java code to perform the most
various tasks. Another good example of bytecode instrumentation
is Binary Component Adaptation [10]. In this case, components
can be adapted and evolve on-the-fly.
RAIL has been developed in parallel with AbstractIL, being one
of the first code instrumentation libraries for .NET. The main
difference of RAIL compared to AbstractIL is that it hides the
complex details of code instrumentation from the programmer,
adds an OO perspective to it and supports several common
instrumentation patterns. It also distinguishes itself from the
available .NET AOP tools for being more general purpose. RAIL
uses many of the lessons learnt in the development of its Java
libraries counterparts and adds new solutions for handling .NET
specific problems and complexity.

4. CONCLUSION
The objective of RAIL is to simplify the task of code
instrumentation, making possible to use it in areas such as AOP,

runtime analysis tools, security verification, software fault
injection and others.
Dynamic code instrumentation is currently an open issue. The
possibility to modify assemblies and classes that are already
loaded into the CLR virtual machine is yet to be addressed. Future
work includes designing the algorithms and methods for
achieving this.
Although RAIL is still very recent it already provides many
features in terms of code instrumentation, such as code
walkthrough, reference replacement, type coping, and addition of
method prologues and epilogues. It also allows non IL experts to
make complex assembly manipulations. For instance, it is
possible to develop classes and methods in a separate assembly,
using a high level programming language like C#, and later copy
and manipulate them into the target assembly.
RAIL is publicly available at http://rail.dei.uc.pt.

5. ACKNOWLEDGMENTS
This project was partially supported by FCT, throught CISUC
(R&D unit 326/97), scholarship SFRH/BD/12549/2003 and by a
Microsoft Research ROTOR grant.

6. REFERENCES
[1] Syme, D. ILX: Extending the .NET Common IL for

Functional Language Interoperability, MS Research,
Cambridge, September 2001. Available at:
http://research.microsoft.com/projects/ilx.

[2] Lam, J. Cross-Language Load-Time Aspect Weaving on
Microsoft's Common Language Runtime. Demonstration at
the AOSD2002, Netherlands, 2002.

[3] Lafferty, D., and Cahill, V. Language-Independent Aspect-
Oriented Programming. In Proc. OOPSLA 2003, Anaheim,
USA, October 2003.

[4] Dahm, M. Byte Code Engineering. In JIT '99, Düsseldorf,
Germany, September 1999.

[5] Cohen, G., Chase, J., and Kaminsky, D. Automatic Program
Transformation with JOIE. In USENIX 1998 Annual
Technical Conference, New Orleans, USA, 1998.

[6] Chiba, S., and Nishizawa M. An Easy-to-Use Toolkit for
Efficient Java Bytecode Translators. In Proc. GPCE '03,
LNCS 2830, Springer-Verlag, 2003.

[7] Ferber, J. Computational Reflection in Class Based Object-
Oriented Languages. In Proc. OOPSLA '89, New Orleans,
USA, October 1989.

[8] J. Malenfant, C. Dony, and P. Cointe. Behavioral Reflection
in a Prototype-Based Language. In Proc. IMSA '92, Tokyo,
1992.

[9] BCEL Project, Apache Software Foundation, 2003.
Available at: http://jakarta.apache.org/bcel/projects.html.

[10] Keller, R., and Hölzle, U., Binary Component Adaptation. In
Proc. ECOOP ’98, Brussels, Belgium, July 1998.

http://oopsla.acm.org/oopsla2003/
http://www.csg.is.titech.ac.jp/paper/chiba-gpce03.pdf
http://www.csg.is.titech.ac.jp/paper/chiba-gpce03.pdf

	INTRODUCTION
	RAIL APPROACH
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

