
RAIL: Code Instrumentation for .NET
Bruno Cabral

CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II
3000-290 Coimbra, Portugal

+351 239790000

bcabral@dei.uc.pt

Paulo Marques
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II
3000-290 Coimbra, Portugal

+351 239790000

pmarques@dei.uc.pt

Luís Silva
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II
3000-290 Coimbra, Portugal

+351 239790000

luis@dei.uc.pt

ABSTRACT
Code instrumentation is a mechanism that allows modules of
programs to be completely rewritten at runtime. With the advent
of virtual machines, this type of functionality is becoming more
interesting because it allows the introduction of new functionality
after an application has been deployed, easy implementation of
aspect-oriented programming, performing security verifications,
dynamic software upgrading, among others.

The Runtime Assembly Instrumentation Library (RAIL) is one of
the first frameworks to implement code instrumentation in the
.NET platform. It specifically addresses the limitations that exist
between the reflection capabilities of .NET and its code emission
functionalities. RAIL gives the programmer an object-oriented
vision of the code of an application, allowing assemblies,
modules, classes, references and even intermediate code to be
easily manipulated.

This paper addresses the design of an implementation of RAIL
along with the difficulties and lessons learned while building a
framework for code instrumentation in .NET.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Code
generation, Run-time environments.

General Terms
Languages.

Keywords
Code instrumentation, .NET platform, runtime.

1. INTRODUCTION
One key aspect of many modern programming languages is that
they are compiled into a portable intermediate form and executed
by a language runtime. Typically, the language runtime allows
code to be loaded at runtime from a binary source (e.g. from a file
or from the network) and executed. Two well known examples
are the Java platform, which supports dynamic class loading [1],
and the .NET framework [2] which allows assemblies to be
dynamically loaded and executed.

One interesting side effect of having dynamic code loading is that
before actually loading the code into a virtual machine, it is
possible to instrument the code, introducing or removing specific
instructions, changing the use of classes, variables and constants.
The key idea is that it is possible to alter the code, performing
some modifications, before the code is actually executed. These
transformations are either performed after compile time, or at load
time. This approach can be quite powerful. For instance, it is
possible to instrument the code so that proper resource control
takes place [3], change the code so that it is possible to serialize
and relocate executing threads in a cluster [4], perform program
consistency checks according to security policies [5], redirect
method calls to proxies, among others.

For making things clearer, let’s consider an example. Suppose
that you have downloaded an application from the Internet but
you cannot really consider it trustworthy. It would be desirable to
be able to know all the files that it is reading and writing from
disk, so that one could be sure that it is not really stealing
confidential information and sending it to a foo. One possible
approach is to try to use a disassembler and understand the code
structure. But, as it is easy to comprehend, that is not really
feasible except for trivial applications. Nevertheless, using code
instrumentation, it is simple to replace all the references to classes
that perform I/O with corresponding proxies that implement the
same interface. Those proxies can log all the calls that are made
before allowing the original invocations to take place. This way,
the user can examine the log and determine which files have been
accessed.

RAIL – the Runtime Assembly Instrumentation Library – is the
first general purpose code instrumentation library for the .NET
platform. It allows assemblies (the code load unit in .NET) to be
easily manipulated into an object-oriented way. Its features
include straightforwardly replacing references, types, variables,
fields, properties and method calls; iterate and change
Intermediate Language (IL) code; adding code epilogues and
prologues to methods; copy types and methods between
assemblies; among others. Also, RAIL provides a series of high
level instrumentation patterns for assisting the programmer
performing code instrumentation. Finally, RAIL allows
assemblies to be instrumented at runtime, just before the types are
actually defined in the Common Language Runtime (CLR) virtual
machine.

The rest of this paper is organized as follows. Section 2 discusses
related work. The implementation of RAIL is described in Section
3. Section 4 presents a simple application scenario. Section 5
draws the conclusions and discusses future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

2. RELATED WORK
Code instrumentation is not a new topic. For as long as binary
code has been generated, people have been manipulating it, even
in its binary form. In terms of libraries for code instrumentation,
probably one of the first worth noting is EEL [6]. EEL was a C++
library that allowed static instrumentation of executables.

The advent of generalized use of virtual machines with dynamic
code loading, and particularly Java, fuelled an immense
development in the field. Two of the most important libraries in
this area are BCEL [7], which is now part of the Apache Project,
and provides a high-level API for manipulating Java byte code,
and JOIE [8] that also allows Java objects to be instrumented.
Together, these libraries have been used on more than 37 projects
[9] which instrument Java code to perform various tasks.

JOIE is a toolkit for constructing byte code transformers for Java.
It provides a set of low-level primitives for manipulating Java
classes, and higher-level interfaces that directly support common
transformer styles. BCEL is a general purpose tool for “byte code
engineering”. It gives full control to the developer and is used as a
base for a large number of projects, since the abstraction it
provides of Java classes and byte code is very low level. An
example of this is that the user must explicitly give the indexes of
the constants in the symbol table, and must manually update these
indexes if they become invalid. SERP [10] uses a similar
approach as that of BCEL, based on an object representation of
classes. Similarly, “Binary Component Adaptation” [11] allows
components to be adapted and evolved on-the-fly. Han Lee’s
“Byte-code Instrumenting Tool” [12] allows the user to insert
calls to analise methods anywhere in the byte code.

Javassist [13] uses a customizable class loader to instrument code
at load-time. BCEL uses the same approach. The difference
between these two libraries is that Javassist provides a higher
level API to manipulate classes and bytecode. It hides the low
level details, like indexes and references recalculation, that the
programmer has to handle when using BCEL. JMangler [14]
distinguishes from the rest by introducing a new technique for
load-time code interception. JMangler modifies the system
ClassLoader class implementation allowing applications that
need to use there own class loaders to be instrumented. This is not
possible to do in BCEL or Javassist.

One related area to code instrumentation is Aspect Oriented
Programming (AOP) [15]. AOP allows the weaving of cross-
cutting concerns into code (e.g. invariant validations on method
calls, security checks, logging). Although AOP is quite limited for
general code instrumentation; code instrumentation is an excellent
tool for implementing AOP. For the .NET platform, John Lam’s
Common Language Aspect Weaver (CLAW) [16] was one of the
first libraries to perform assembly manipulation by “weaving”
aspects into class methods. Weave.Net [17] is another tool
dedicated to AOP in the .NET platform. It uses the
CLIFileReader [18] to access metadata and Intermediate
Language (IL) code in assemblies.

As it was stated in the introduction, RAIL is the first general
purpose instrumentation library for the .NET platform. RAIL’s
approach to application instrumentation is more wide-ranging
than the solutions presented until now.

By means of a tree-like object-oriented structure representing the
assembly and its components, RAIL supports structural [19] and
behavioural [19,20] reflection. With RAIL it is possible to
simultaneously perform low-level modifications in assemblies and
high-level manipulations. RAIL is also a cross-language library,
since it can be used from any language that compiles for the .NET
platform.

One important aspect of RAIL is the abstraction of common
instrumentation operations in usage patterns, easing the task of the
programmer. This is especially relevant because, in general,
performing code instrumentation is a hard low-level task which is
quite error-prone.

The most related project to RAIL is AbstractIL [21] from
Microsoft Research. AbstractIL transforms assemblies into a
structured abstract syntax tree that can be manipulated using
OCaml , F# and C# languages. One of the shortcomings of this
library is that it specifically targets the usage of functional
languages (e.g. OCaml), and does not shield the programmer from
the complexities of manipulating assemblies.

Finally, it is important to mention that although RAIL implements
some of the abstractions found in other code instrumentation
libraries for Java, internally, the way they are implemented is
quite different. To illustrate this difference we can say, for
instance, that the minimal load unit in Java is the Class and in
.NET is the Assembly. We can also refer that the mechanisms
used by these tools in Java to intercept class loading are not
available in .NET. Customizable class loaders [1], for instance,
are specific to the Java platform. This paper also details some of
the problems, differences and lessons learned on implementing
these abstractions in .NET.

3. IMPLEMENTING ASSEMBLY
INSTRUMENTATION
RAIL is organized in four different modules. The first uses the
Mono.PEToolkit [22] and it is responsible for reading the
assembly. RAIL transforms the assembly into an object-oriented
structure. RAIL.Reflect includes classes that represent the
assembly and its modules, types, methods, properties, fields and
events. RAIL.MSIL classes take care of the representation of IL
instructions and method bodies. A set of high level functionalities
is implemented under the RAIL namespace and allow to: Change
type references across the assembly; Replace field access by other
fields, methods and properties; Replace method calls; Replace IL
instructions responsible for object creation by calls to different
static methods; Insert prologues and epilogues in methods; Copy
types and methods between assemblies; Manipulate Custom
Attributes.

RAIL allows the programmer to work at a high level, using
classes that implement all these functionalities; or at the
instruction level by directly manipulating the table of objects that
represents the methods’ code and the objects that represent the
instructions. Instrumentation becomes a complex task when the
insertion or deletion of program parts and instructions generate or
destroy dependencies in the execution flow (e.g. removing a
parameter from a method signature will invalidate all the
references to that parameter).

The final step of all the instrumentations performed with RAIL is
the conversion of the internal OO representation of the assembly
into System.Reflection.Emit classes, dynamically
generating an assembly [2].

3.1 Object-Oriented Representation of an
Assembly
This section discusses the way RAIL represents assemblies. A
Portable Executable (PE) file for the .NET platform [2] is
considerably complex. Metadata describes the structure of an
assembly and its components; it is stored in multiple tables inside
the .text section of the PE along with the IL code.

A PE file is a module of an assembly. All the module files have
the same structure. The structure of a Portable Executable file
starts with an MS-DOS header, a COFF header, a PE header and
several native PE sections like .data, .rdata, .rsrc and
.text [2]. An assembly can be formed by several modules, and
the difference between the main module and the rest is that the
first one holds manifest information. Manifest is the name given
to the metadata that describes the assembly and its modules.
Metadata is organized as a set of tables with information that
describes the application and its components. Intermediate
Language (IL) code, on the other hand is a stream of bytes
representing instructions, values and references.
Metadata and IL code reference metadata using coded tokens. A
coded token consists of a composed value, where a part of it
refers to the target metadata table and the other part to the index
of that table row.
The first task of RAIL is to read and interpret assemblies and then
build a structured representation of them. RAIL’s first layer
transforms the assembly into an object-oriented tree structure
down to the instruction level. RAIL creates the objects and builds
the object structure that represents the assembly and its
components based on data gathered from the metadata tables.
The hierarchy of assembly components follows the following
structure from top down: Assembly, Module, Type and Type
members. Type members are Properties, Fields, Constructors,
Methods and Events. Enums and arrays are “special” types.
RAIL has a set of abstract classes that represent this hierarchy;
they are RAssembly, RModule, RType and RMember.
RMember class is specialized by RProperty, RField,
RMethodBase and REvent; RMethodBase is a
generalization for RMethod and RConstructor classes.

Each one of these abstract classes has two implementations:
“Def” types and “Ref” types (e.g. RTypeDef and RTypeRef).

The difference between Def and Ref classes is that the first ones
are part of the assembly being instrumented, it is possible to
modify them and the others represent references to outside
assembly members and they cannot be manipulated.
Altering the application by means of structural reflection consists
in modifying the OO structure that represents the members of the
assembly being instrumented.

3.2 IL Code Instrumentation
The classes of the RAIL.MSIL namespace represent the low
level details of an assembly, such as the IL instructions and their
operands.

RAIL represents the assembly structure using objects down to the
instruction level. Since there are more than 200 different opcodes,
an abstract class is used to represent a general instruction.
Concrete classes such as ILNone, ILString, ILMethod,
ILType and others represent instructions according to their
operands. This way each class represents more than one kind of
instruction, but with a common operator type.
IL instructions and metadata itself reference metadata using coded
tokens which sometimes are stored in a compressed form in an
assembly (signatures are also stored in a compressed form). RAIL
has implemented methods that are able to decode these
compressed values and to resolve encoded references to types.
This way an object representing an instruction in RAIL does not
have a token as an operand, but a reference to an object.

Resolving compressed values and tokens is essential when
creating a representation of the IL code streams. Each instruction
will be translated into an object entry into an array that contains
the code of the method. The operands of each instruction are
references to other objects such as:

• RAIL.MSIL.Instruction

• RAIL.MSIL.LocalVariable

• RAIL.Reflect.RType

• RAIL.Reflect.RMethodBase

• RAIL.Reflect.RMember

It is possible to manipulate the list of instructions directly. These
manipulations should be done by experts because, the
adding/removing/modifying instructions operations does not have
any kind of security checks to avoid the generation of errors
besides the ones implemented in the ILGenerator class of
System.Reflection.Emit. This will be illustrated in
section 3.4.
To create objects representing IL instructions there is a special
factory class. This class provides a very exhaustive set of methods
that allow the creation of any kind of Instruction object by its
OpCode name (e.g. ILFactory.Ldstr(“Hello World”)
returns an ILString object that represents the following code in
IL [ldstr “Hello World”]).

Exception handling information is kept in a table. This table holds
the objects that reference the instructions in the method at the start
and end of the “try…catch” blocks. There are also objects
pointing to the instructions that delimit the exception handler
blocks according to their type.

3.3 Implementing High-Level Functionalities
The RAIL.Reflect and RAIL.MSIL namespaces define the
classes that are used in creating an object-oriented representation
of an assembly. The RAIL.CodeTranformer class provides
the bases for high-level instrumentation of assemblies.
CodeTransformer holds a list of objects that specify the kind
of transformations that should be applied to the assembly.
CodeTranformer does not check or reorganizes the order that
these transformers are applied to the assembly, and therefore does
not verify if any kind of incompatibilities exist. This checking and
verification should be done by the programmer.

To simplify the instrumentation process and the development of
high-level functionalities, RAIL implements a Visitor pattern
[23].
When designing a class using the Visitor pattern in RAIL, the
programmer can implement methods that may “visit” the
following components: Assembly; Modules; Types; Methods;
Constructors; Fields; Properties; Events.
These classes can be used together with the CodeTranformer
class as part of the list of transformations that it applies. RAIL
already possesses a set of classes that implement the high-level
functionalities described in the beginning of section 3.

3.4 Generating Assemblies
The process of assembly generation in RAIL is relatively simple.
Basically, it consists of transforming the RAIL representation of
an assembly into a .NET’s Reflection.Emit representation.

To generate the IL code, RAIL provides a class that creates an
ILGenerator object for each method. The generation of an IL
instruction is done by executing the Write() method of the
object representing the instruction. This method calls the
ILGenerator with the appropriate parameters for each
particular instruction and operand type.

3.5 Load-Time Instrumentation with RAIL
Up until now we have discussed how to represent and modify an
assembly using RAIL. This support is enough to allow static
manipulation of assemblies. Nevertheless a much more interesting
functionality is code instrumentation at runtime.
 In Java, most of the instrumentation libraries achieve this goal by
writing their own customizable class loader (BCEL, JOIE,
Javassist) [7,8,13]; by modifying the defineClass() method
in the main ClassLoader of the platform using HotSwap
technology [14]; or by modifying the platform bootstrap
ClassLoader [11].

The .NET platform provides mechanisms to dynamically load
assemblies, methods like AppDomain.Load() and
Assembly.Load(). When RAIL generates the
AssemblyBuilder object its classes and methods become
available to the runtime environment. It is possible to save this
assembly to disk so that it can be loaded latter on by an
application.
The .NET platform also provides a redirect binding mechanism
that allows providing to the CLR a different version of the
assembly it is looking for.
In RAIL the technique used is to intercept the event that occurs
when the CLR is not able to resolve an assembly reference. To do
this RAIL registers a new method in the
ResolveEventHandler delegate [2] associated with the
event. This method should do all the modifications in the
assembly being called and return a new version of it to the CLR.

4. EXAMPLE APPLICATION
This section illustrates a very simple example that was presented
in the first section of this article, in which the disk accesses that
an application makes are logged. The objective is to find out if
there is any kind of untrusting operations going on without ones
knowledge. This is a relevant scenario due to the fact that most of

the times we use applications developed by third-parties. A lot of
these applications are not very transparent about what kind of I/O
operations they perform. We would like to know, for instance, in
what files of our filesystem a certain program is writing to and
reading from.
There are several ways of adding this functionality to an
application. But, to illustrate how RAIL could be used in this
situation, we will use the following approach:
Change all the references to system classes that implement the
reading and writing onto the file system with references to other
classes that proxy them, allowing the logging of the file accesses.
In C#, the System.IO namespace classes like
BinaryWriter, TextWriter, BinaryReader and
TextReader provide the methods needed to write and read into
and from the filesystem. The first thing to do is to write proxy
classes and implement them in a way that a log file is created of
the operations being executed for posterior analysis. Then,
compile this set of classes into an assembly (Assembly B).
Let’s assume that we call the application being instrumented
Assembly A and use RAIL to build an object-oriented
representation of it and of the assembly where the proxy classes
are defined (Assembly B).
From this point on two RAssemblyDef objects exist
representing the assemblies.
The next code illustrates how to load an assembly using RAIL:
RAssemblyDef AssemblyA =
 AssemblyDef.LoadAssembly("AssemblyA.exe");

Next the proxy classes are copied into the assembly, this step is
not essential, but it illustrates well the capabilities of RAIL to
copy classes from one assembly to another.
It is necessary to obtain references to RType objects from
assembly B implementing the proxy classes:
RType ProxyClassToBinaryWriter =
 AssemblyB.RModuleDef.GetType(
 "ProxyClassToBinaryWriter");

Then copy the RType obtained to Assembly A:
RTypeDef NewProxyClassToBinaryWriter =
 AssemblyA.RModuleDef.CopyType(
 ProxyClassToBinaryWriter,
 "ProxyClassToBinaryWriter");

Next it is necessary to get references to the original I/O classes:
RType OriginalBinaryWriter =
AssemblyA.GetType("System.IO.BinaryWriter");

To change the references to the original classes with references to
the proxy classes through all the assembly, it is necessary to
create a ReferenceReplacer object.
ReferenceReplacer rr =
 new ReferenceReplacer(
 OriginalBinaryWriter,
 NewProxyClassToBinaryWriter);

Finally apply the changes to the assembly and save it:
AssemblyA.Accept(rr);
AssemblyA.SaveAssembly("AssemblyA.exe");

ILDasm is an application that is part of the .NET platform and
allows us to disassembly and see the IL code of an assembly. If

you use this tool to compare the original assembly and the
instrumented one, you will immediately spot the differences in the
code, because the calls to the original system classes are now
replaced with the proxy classes. Plus you will find that these
proxy classes are now part of the assembly.

5. CONCLUSIONS AND FUTURE WORK
The objective of RAIL is to simplify the task of code
instrumentation, being possible to use it in areas such as AOP,
runtime analysis tools, security verification, software fault
injection and others.
Although RAIL is still very recent it already provides many
features in terms of code instrumentation, such as code
walkthrough, reference replacement, type coping, and addition of
method prologues and epilogues. It also allows non IL experts to
make complex assembly manipulation. For instance, it is possible
to develop classes and methods in a separate assembly, using a
high level programming language like C#, and later copy them
into the target assembly and give new implementations to the
existing methods.
There is still work to be done in RAIL, like implementing the
support of multiple module assemblies and resolving some
important security questions when handling strong named
assemblies, since the CLR does not allow modified strong named
assemblies to be executed.
Dynamic code instrumentation is another open topic in this area.
The possibility to modify assemblies and classes that are already
loaded in the virtual machine has not yet been addressed.
RAIL could be used to transform applications in a way that they
allow themselves to be modified after being loaded. Future work
consists of designing the algorithms that would allow this to
happen inside running programs.
The RAIL library is publicly available at [24].

6. ACKNOWLEDGMENTS
This project was partially supported by FCT, thought CISUC
(R&D unit 326/97), scholarship SFRH/BD/12549/2003 and by a
Microsoft Research ROTOR grant.

7. REFERENCES
[1] Lian, S., and Bracha, G. “Dynamic Class Loading in the Java

Virtual Machine”. In Proceedings of the Object-Oriented
Programming Systems Languages and Applications
(OOPSLA’98), ACM Press, Vancouver, Canada, 1998.

[2] ECMA International. Standard ECMA-335 Common
Language Infrastructure (CLI), ECMA Standard, 2003.

[3] Binder, W., Hulaas, J., Villazón, A., and Vidal, R. “Portable
Resource Control in Java: The J-SEAL2 Approach”. In
Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA-2001), ACM Press, Florida, USA, 2001.

[4] Truyen, E., Robben, B., Vanhaute, B., Coninx, T., Joosen,
W., and Verbaeten, P. “Portable Support for Transparent
Thread Migration in Java”. In Proceedings of the Joint
Symposium on Agent Systems and Applications/Mobile
Agents (ASA/MA’2000), Springer-Verlag, LNCS 1882,
Zürich, Switzerland, 2000.

[5] Chander, A., Mitchell, J., and Shin, I. “Mobile Code Security
through Java Byte Code modification”, 1999. Available at:
http://theory.stanford.edu/~vganesh/project.html.

[6] Larus, J. EEL – An Executable Editing Library, University
of Wisconsin, Madison, U.S.A., 1996. Available at:
http://www.cs.wisc.edu/~larus/eel.html.

[7] Dahm, M. “Byte Code Engineering”. In JIT '99 - Java-
Informations-Tage, Informatik Aktuell, Springer-Verlag,
Dusseldorf, Germany, September 1999. ISBN 3-540-66464-
5.

[8] Cohen, G.A., Chase, J.S., and Kaminsky, D.L.” Automatic
Program Transformation with JOIE”. In Proceedings of the
USENIX 1998 Annual Technical Conference, New Orleans,
Louisiana, USA, 1998.

[9] Apache Software Foundation, BCEL Projects, Apache
Software Foundation, 2003. Available at:
http://jakarta.apache.org/bcel/projects.html.

[10] White, A. A. SERP: Overview, 2002. Available at:
http://serp.sourceforge.net.

[11] Keller, R., and Hölzle, U. “Binary Component Adaptation”.
In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’98), Springer-Verlag,
LNCS 1445, Brussels, Belgium, July 1998.

[12] Lee, H., and Zorn, B. G. “BIT: A Tool for Instrumenting
Java Bytecodes”. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems, Monterey, California,
USA, December 1997.

[13] Chiba, S. “Load-Time Structural Reflection in Java”. In
Proceedings of the European Conf. on Object-Oriented
Programming (ECOOP’00), Springer-Verlag, LNCS 1850,
Sophia Antipolis and Cannes, France, June 2000.

[14] Kniesel, G., Costanza, P. and Austermann, M. “JMangler –
A Framework for Load-Time Transformation of Java Class
Files”. In IEEE Workshop on Source Code Analysis and
Manipulation (SCAM), November 2001.

[15] Elrad, T., Filman, R.E., and Bader, A. “Aspect-Oriented
Programming”. In Communications of the ACM, ACM Press,
New York, New York, USA, October 2001, Vol.44 (10), pp.
29-32. ISSN 0001-0782.

[16] Lam, J. “Cross-Language Load-Time Aspect Weaving on
Microsoft's Common Language Runtime”. Demonstration at
the 1st International Conference on Aspect-Oriented
Software Development (AOSD2002), University of Twente
Enschede, The Netherlands, 2002.

[17] Lafferty, D., and Cahill, V. “Language-Independent Aspect-
Oriented Programming”. In Proceedings of the 18th ACM
SIGPLAN conference on Object-oriented programming
(OOPSLA 2003), ACM Press, Anaheim, California, USA,
October 2003.

[18] Cisternino, A. CLIFileReader Library, University of Pisa,
Pisa, Italy, February 2004. Available at:
http://dotnet.di.unipi.it/MultipleContentView.aspx?code=103

[19] Ferber, J. “Computational Reflection in Class Based Object-
Oriented Languages”. In Proceedings of the 4th ACM
Conference on Object-Oriented Programming Systems,

Languages and Applications (OOPSLA'89), ACM Press,
New Orleans, Louisiana. October 1989.

[20] Malenfant, J., Dony, C. and Cointe, P. “Behavioral
Reflection in a Prototype-Based Language”. In Workshop on
Reflection and Meta-Level Architectures (IMSA'92), Tokyo,
1992.

[21] Syme, D. “ILX: Extending the .NET Common IL for
Functional Language Interoperability”, Microsoft Research,
Cambridge, September 2001. Available at:
http://research.microsoft.com/projects/ilx.

[22] Chaban, S. Mono.PEToolkit. Mono Project. Novell, Inc.
2004. Available at: http://www.go-mono.com.

[23] Gamma, E., Vlissides, J., Johnson, R., and Helm, R., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Pub Co, October 1994. ISBN: 0-201-
63361-2.

[24] Dependable Systems Group of the University of Coimbra,
RAIL project, CISUC, 2004. Available at:
http://rail.dei.uc.pt.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

